

Callide Oxyfuel Project—Completion of World's First Integrated Oxyfuel Combustion and CO2 Capture Demonstration in a Utility Power Station

> Press Release Information March 2, 2015

Profile of the Callide Oxyfuel Combustion Project

ONear zero-emission coal-fired thermal power generation using oxyfuel combustion technology has been demonstrated at the Callide A Power Station (generating capacity: 30,000kW), a coal-fired thermal power station located in Central Queensland, Australia. The aim of the project is the practical implementation of a carbon capture and storage (CCS) technology.

Demonstration of the world's first CO_2 capture and underground injection using <u>oxyfuel combustion</u> <u>technology</u> in a <u>coal-fired thermal power station</u> (30,000kW)

Aim

To demonstrate the reliability and practicality of an oxyfuel thermal power generation system and the process of CO_2 capture and underground injection, to obtain data for commercial implementation, and to accumulate operating tests

Participants	Japan→	J-LLP(formed by J-POWER, IHI, Mitsui & Co.), JCOAL (collaborating partner)
	Australia→	CS Energy, Glencore, Schlumberger, ACA
		Low Emissions Technologies

What is oxyfuel combustion?

A technology used in thermal power stations, etc., to burn fuel in oxygen, in order to facilitate CO_2 capture by producing boiler exhaust gases consisting mainly of CO_2

<u>System</u>

- Equipment to produce oxygen through air separation
- Exhaust gas recirculation and combustion temperature adjustment to allow use of existing boiler technology

Features

- Suitable for existing or new power stations
- Reduction of energy requirements and costs for CO₂ capture
- Major reduction in nitrous oxide (NOx) emissions

Budget	Approximately A\$245 million in total (including subsidies from the Japanese and		
	Australian governments) Japan-side contribution: Approx. A\$40 million (approx. A\$20 million (approx. ¥1.9 billion) each by the government and private sector)		
Schedule	 2008-2012 Modification of existing thermal power station 2012-2015 Test operation of oxyfuel combustion 2014 CO₂ injection/monitoring 2014-2016 Post-injection CO2 monitoring, feasibility assessment 		

Principal of the Oxyfuel Combustion System

Air combustion

Because air is approximately 79% nitrogen (N₂), the carbon dioxide (CO2) concentration in exhaust gas produced when coal is burned using conventional air combustion is around 16%.

Oxyfuel combustion

Oxyfuel combustion uses the oxygen (O₂) remaining after the nitrogen (N₂) has been separated from the air. This raises the concentration of CO₂ in the exhaust gas to over 90% while reducing the volume of gas to about one-fifth. The gas can then be compressed and captured.

Overview of the Callide A Power Station

Oxyfuel Project Partners

